
Chapter 2

Quantum Monte Carlo
methods

In this chapter we will make a description of the numerical methods that we
have been using in order to give a microscopic description of a quantum many
body system.

We are interested in giving an accurate description of a quantum fluid of
identical particles interacting by means of a pair potential. The complete de-
scription of such a system at zero temperature is given by the Schrödinger
equation (SE):

H|Ψ >= E|Ψ > (2.1)

where the hamiltonian H is given, in general, by

H = − ~2

2m

N∑
i=1

∇2 +

N∑
i=1

V1(ri) +
1

2

N∑
i=1

N∑
j=1,j 6=i

V2(ri − rj) (2.2)

where V1 is an external potential corresponding to an externally applied field
and V2 is a pair interaction that describe the inter-particle interactions.

In the following, we will use the following notation. We call R the whole set
of coordinates of the system, i. e., R = {r1, ..., rN}. With this definition, the

operator ∇2
R =

∑N
i=1∇2

i is the laplacian needed for the kinetic term, and finally

the potential term will be V (R) =
∑N
i=1 V1(ri) + 1

2

∑N
i=1

∑N
j=1,j 6=i V2(ri − rj).

9
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2.1 Variational Monte Carlo

Variational Monte Carlo (VMC) [47] is the simplest and fastest Monte Carlo
method that can be used to obtain an approximate solution to the many-body
problem by using the variational principle.

2.1.1 Variational principle

The variational principle tells us that if we consider a trial wave function ΨT

the expectation value

E[ΨT ] =
< ΨT |H|ΨT >

< ΨT |ΨT >
(2.3)

is an upper bound to the ground state energy of the Hamiltonian H. This
statement can be easily shown by expanding the trial wave function Ψ in the
basis of eigenstates of the Hamiltonian

|ΨT >=
∑
n

an|φn > (2.4)

where the functions |φn > verify

H|φn >= En|φn > and < φn|φm >= δn,m (2.5)

We can use the eigenstate expansion (2.4) in the expectation value (2.1) obtain-
ing the following

E[ΨT ] =
(
∑
n a
∗
n < φn|)H (

∑
m am|φm >)

(
∑
n a
∗
n < φn|) (

∑
m am|φm >)

(2.6)

where by using the properties (2.5) we can finally write the energy of the trial
wave function as:

E[ΨT ] =

∑
n |an|2En∑
n |an|2

. (2.7)

In the last expression one can easily see that the expectation value of the energy
for the trial wave function |ΨT > is always greater than the ground state energy
of the hamiltonian unless |ΨT >= |φ0 >. It is useful to consider trial (or
variational) wave functions that depends on one or more parameters (λ1, ...λn)
called variational parameters. Those parameters can be optimized to get the
lowest energy for a given family of wave functions |ΨT (λ1, ...λn) >. In the



2.1. VARIATIONAL MONTE CARLO 11

simplest case of an uniparametric family of variational wave functions |ΨT (λ) >
the energy expectation value will be given by

E[ΨT (λ)] =
< ΨT (λ)|H|ΨT (λ) >

< ΨT (λ)|ΨT (λ) >
(2.8)

and we can find the optimal variational energy of the hamiltonian by simply
minimising this energy expectation value:

dE[λ]

dλ
|λoptimal = 0 (2.9)

2.1.2 Monte Carlo sampling of a variational wave function

The idea behind the variational Monte Carlo method (VMC) is to perform the
evaluation of the expectation value in (2.3), that is in general a high dimension
integral, by means of an stochastic sampling of a given variational wave function
using the Metropolis algorithm.

In position basis the expectation value in (2.3) can be written as

E[ΨT ] =

∫
dRΨ∗T (R)HΨT (R)∫
dRΨ∗T (R)ΨT (R)

. (2.10)

This integral expression can be written in a more convenient way for Monte
Carlo sampling if we think that the square modulus of the wave function gives
the propability of finding the system in the configuration R,

< E >ΨT =

∫
dREL(R)P (R), (2.11)

where the following two quantities are defined: the probability distribution,
P (R)

P (R) =
Ψ∗T (R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

; (2.12)

and the so-called local energy, EL(R)

EL(R) =
HΨT (R)

ΨT (R)
. (2.13)

The function P (R) is a well behaved probability distribution that can be sam-
pled using the Metropolis algorithm in order to obtain a sequence of configura-
tions of the system distributed according to it.
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Given an ensemble of NMC configurations drawn from P (R) we can simply
evaluate the energy expectation value of the hamiltonian as:

< E >ΨT≈
1

NMC

NMC∑
i=1

EL(Ri), (2.14)

and, in general, any observable O can be evaluated along the Monte Carlo
sampling as:

< O >ΨT≈
1

NMC

NMC∑
i=1

O(Ri). (2.15)

So, given a trial wave function one can compute any observable of interest simply
by using expression (2.15).

2.1.3 Variational Monte Carlo algorithm

At this point we have all the ingredients to give an algorithmic description of
the VMC method. Let’s explain the steps of the VMC algorithm:

1. Draw an initial configuration of the system of interest, R.

2. Guess a new configuration as R′ = R + δR, with δR coming from a
uniform or gaussian probability distribution function that verifies p(R′ →
R) = p(R→ R′).

3. Evaluate the transition probability as Q =
Ψ2
T (R′)

Ψ2
T (R)

4. Accept or reject the new configuration using Metropolis algorithm.

5. Compute observables of interest.

6. Repeat 2 - 5 to achieve desired accuracy in the calculation.

2.2 Imaginary time propagation methods

VMC is a fast and simple method to compute properties of a quantum many
- body system, but it has a very important limitation: all the expectation
values of any observable in VMC is completely determined by the trial wave
function. The quality of the results obtained in a VMC simulation is directly
related to the quality of the variational wave function, so one can expect that
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for situations where the wave function is poorly known VMC method is not an
accurate solution of the quantum problem.

To overcome the limitations of the VMC method we can consider a different
family of Monte Carlo methods that can solve the Schrödinger equation by
transforming it into an integral equation. The evolution of a quantum system
is given by the time dependent Schrödinger equation:

i~
∂Ψ

∂t
= − ~2

2m

N∑
i=1

∇2Ψ +

N∑
i=1

V1(ri)Ψ +
1

2

N∑
i=1

N∑
j=1,j 6=i

V2(ri − rj)Ψ. (2.16)

We are mainly interested in the ground-state properties of the system. This
can be done by defining the imaginary time as τ = it

~ and thus considering the
imaginary-time dependent Schrödinger equation

− ∂Ψ

∂τ
= − ~2

2m

N∑
i=1

∇2Ψ +

N∑
i=1

V1(ri)Ψ +
1

2

N∑
i=1

N∑
j=1,j 6=i

V2(ri − rj)Ψ. (2.17)

The imaginary-time dependent Schrödinger equation can be written in operator
form as:

− ∂|Ψ(τ) >

∂τ
= H|Ψ(τ) > (2.18)

whose formal solution is:

|Ψ(τ) >= e−Hτ |Ψ(0) > . (2.19)

The wave function at τ = 0 can be expanded in terms of the eigenstates of the
hamiltonian

|Ψ(0) >=

∞∑
i=0

ai|φi > (2.20)

and introduce this eigenstate expansion in (2.19) to obtain

|Ψ(τ) >=

∞∑
i=0

aie
−τεi |φi > . (2.21)

If the eigenvalues of the hamiltonian are ordered as ε0 < ε1 < ε2 < ... one can
see from (2.21) that for τ → ∞ all contributions are exponentially vanishing
and the slowest decaying term is the corresponding to the ground state of the
system. So we can write

|Ψ(τ →∞) >≈ a0e
−τE0 |φ0 > . (2.22)
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There are several ways to implement the imaginary time propagation of an initial
wave function that correspond to different quantum Monte Carlo methods. We
have used two main approaches to solve this problem that we will see in the
following two sections.

2.2.1 Diffusion Monte Carlo

The first method that we present to implement the imaginary time propaga-
tion is the diffusion Monte Carlo method (DMC) [47, 48]. DMC exploits the
analogy between the imaginary-time dependent Schrödinger equation and the
diffusion equation to achieve the stationary regime of the problem. The sta-
tionary solution is proportional to the ground state of the many body quatum
problem.

The starting point is the imaginary time dependent Schrödinger equation
with an energy shift H → H − ET :

− ∂|Ψ(τ) >

∂τ
= (H − ET )|Ψ(τ) >, (2.23)

If we write explicitly the hamiltonian operator in eq. (2.23) we can write the
SE as:

− ∂Ψ

∂τ
= − ~2

2m
∇2

RΨ + (V (R)− ET )Ψ (2.24)

That is a standard diffusion equation with an additional term that can be in-
terpreted as a sink/source of probability.

If we write now the spectral decomposition of the time-dependent wave func-
tion in terms of the imaginary time τ we obtain the following expression:

Ψ(R, τ) =
∑
n

anφn(R)e−(εn−ET )τ (2.25)

If we assume that the eigenvalues εn are ordered as ε0 < ε1 < · · · < εn < · · · we
can infer that the asymptotic behavior of Ψ(R, τ) is given by:

• if ET > ε0 the wave function Ψ diverges.

• if ET < ε0 the wave function Ψ vanishes.

• if ET = ε0 the wave function Ψ ≈ c0φ0.
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The physical interpretation of the method is clear, we must perform an imag-
inary time evolution until the asymptotic regime is reached, and by a clever
choice of the reference energy, ET , we will find the ground state energy.

There are two practical considerations about the outline of the DMC method
as it is presented here. The first one is that the initial many–body wave function
Ψ(R, 0) must have a significant overlap with the ground state wave function
φ0(R) if we want a0 being not too small. The second consideration is that this
simple version of DMC requires that the ground state wave function must be
positive definite as it effectively happens with the many-body ground state wave
function for a system of bosons; for fermions the situation is different and some
approximations must be done.

After this last considerations, we will explain how the many-body SE can
be integrated using Monte Carlo techniques.

Monte Carlo integration of the many-body Schrödinger equation

For the suitable integration of the many-body SE we have to transform the
differential equation in an equivalent integral equation, and, this is easily done
by considering the Green’s function formalism.

The Green’s function of the SE can be defined in an operatorial formalism,
and then we will find the equivalent coordinate representation and using it, a
practical expression for the Green’s function.

The independent-basis SE for our problem is given by:

∂|Ψ >

∂τ
= −(H − ET )|Ψ > (2.26)

that can be formally solved by means of the time evolution operator U(τ, 0) as
follows:

|Ψ(τ) >= U(τ, 0)|Ψ(0) > (2.27)

where U(τ, 0) is given by:

U(τ, 0) = e−(H−ET )τ (2.28)

now we can project the solution of the SE given in eq. (2.27) in position basis

< R|Ψ(τ) >=

∫
dR′ < R|U(τ, 0)|R′ >< R′|Ψ(0) > (2.29)

that can be writen as:

Ψ(R, τ) =

∫
dR′ < R|U(τ, 0)|R′ > Ψ(R′, 0). (2.30)
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Then we finally have writen an integral equation, equaivalent to the many-body
SE and the only problem is to determine the kernel of the integral equation
given by < R|U(τ, 0)|R′ > that we define as:

G(R,R′, τ) ≡< R|U(τ, 0)|R′ > (2.31)

that is the Green’s function of the SE. This Green’s function can be determined
by solving the differential equation:

− ∂G

∂τ
= − ~2

2m
∇2

RG+ (V (R)− ET )G (2.32)

with the initial condition:

G(R,R′, 0) = δ(R−R′) (2.33)

The SE is then written in terms of the Green’s function as:

Ψ(R, τ) =

∫
dR′G(R,R′, τ)Ψ(R′, 0) (2.34)

This is an integral equation that can be solved using Monte Carlo integration.
The problem with the previous integral equation is that the Green’s function of
the problem is not known. However, we can evaluate the imaginary time evolu-
tion of the wave function using the following property of the Green’s function,∫

dR′′G(R,R′′, τ)G(R′′,R’, τ) = G(R,R′, 2τ) (2.35)

Then, we can consider the full propagation in imaginary time as successive
propagations of time step ∆τ , and then, we only need to find some short-
time approximation for the total Green’s function. We can write the following
expression for the propagation of the wave function:

Ψ(R,∆τ) =

∫
dR′G(R,R′,∆τ)Ψ(R′, 0) (2.36)

or generalizing this expression to an arbitrary step n,

Ψ(R, n∆τ) =

∫
dR′G(R,R′,∆τ)Ψ(R′, (n− 1)∆τ) (2.37)

And then, as we have seen before, we only need to find some suitable approxi-
mation for the Green’s function for small ∆τ .
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Short time Green’s function

The differential equation that defines the Green’s function is given by:

− ∂G(R,R′, τ)

∂τ
=

[
− ~2

2m
∇2

R + (V (R)− ET )

]
G(R,R′, τ) (2.38)

with the boundary condition G(R,R′, 0) = δ(R−R′).
Now the main problem to obtain an expression for the total Green’s function

comes from the non conmutativity of the kinetic and potential terms in the
hamiltonian. However, the evaluation of the Green’s function corresponding to
each of the individual pieces is trivial to do. If we consider the two contributions
to the Green’s function separately we will have, for the kinetic term:

GK(R,R′, τ) =< R|e− P̂
2

2m |R′ > (2.39)

That can be easily evaluated in position basis by means of gaussian integration,
giving a final kinetic Green’s function:

GK(R,R′, τ) =
( m

2π~2τ

) dN
2

exp

[
−m
~2

(R−R′)2

2τ

]
(2.40)

where d is the dimensionality of the studied system.
For the interaction term we have:

GV (R,R′, τ) =< R|e−(V−ET )τ |R′ > (2.41)

that in position basis is:

GV (R,R′, τ) = exp [−(V (R)− ET )τ ] δ(R−R′) (2.42)

With the propagators GK and GV we can build short time approximations to
the total Green’s function.

The time evolution operator defined in (2.28) can be approximated in dif-
ferent ways. A possible approximation of order ∆τ2 is the following:

U(∆τ) = e−(K+V−ET )∆τ ≈ e−K∆τe−(V−ET )∆τ +O(∆τ2) (2.43)

which gives an approximate Green’s function given by:

G(R,R′,∆τ) =
( m

2π~2∆τ

) dN
2

e−(V (R)−ET )∆τ

exp

[
−m
~2

(R−R′)2

2∆τ

]
+O(∆τ2)

(2.44)
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that is exact at first order in ∆τ .
Another possible decomposition of the time evolution operator is the following:

U(∆τ) = e−(K+V−ET )∆τ ≈ e−(V−ET ) ∆τ
2 e−K∆τe−(V−ET ) ∆τ

2 +O(∆τ3) (2.45)

which gives an approximate Green’s function given by:

G(R,R′,∆τ) =
( m

2π~2∆τ

) dN
2

e
−
(
V (R)+V (R′)

2 −ET
)

∆τ

exp

[
−m
~2

(R−R′)2

2∆τ

]
+O(∆τ3)

(2.46)

which is exact at second order in ∆τ .

Importance sampling

In real many body problems with hard-core-like interaction potentials the simple
DMC algorithm shows a poor convergence to the ground state solution, with
large statistical fluctuations in the mean values of the evaluated observables.
However, this can be corrected by means of importance sampling.

In this section we will explain the trick that makes DMC a really pow-
erful method to solve many-body problems: the importance sampling tech-
nique. In the previous section we have seen how the imaginary time-dependent
Schrödinger equation can be solved by means of Monte Carlo techniques. In
this section, we will rewrite it for a different wave function given by:

f(R, τ) ≡ ΨT (R)Ψ(R, τ) (2.47)

where ΨT (R) is a trial (or guiding) wave function that is expected to be a
good approximation to the exact ground state wave function of the system and
it is intended to guide the random walk process in order to obtain a faster
convergence.

We can write the SE for the function f(R, τ) from equation (2.24) simply

by substituting Ψ(R, τ) = f(R,τ)
ΨT (R) . This gives the following differential equation:

− ∂f

∂τ
= −1

2
∇2

Rf +∇(Ff) + (EL(R)− ET ) f (2.48)

where we have defined the drift force (or velocity) as:

F(R) ≡ ∇R log ΨT (R) (2.49)
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and EL(R) is the local energy defined in (2.13) that can be written using the
definition of the drift force as:

EL(R) = − ~2

2m

[
∇2

R log ΨT (R) + (F(R))2
]

+ V (R) (2.50)

Equation (2.48) can be written in operator notation as:

− ∂f

∂τ
= (K +D +B)f (2.51)

where K is the kinetic (or diffusive) term, D is the drift term and B is the
termed branching term. As in the non-importance sampling case, we can write
the evolution in imaginary time of the new wave function f(R, τ) as an evolution
operator acting on the initial wave function:

|f(τ) >= U(τ, 0)|f(0) >= e−(K+D+B)τ |f(0) > (2.52)

In position basis the previous equation is:

f(R, τ) =

∫
dR′ < R|e−(K+D+B)τ |R′ > f(R’, 0) (2.53)

The Green’s function of each individual term in the new hamiltonian are:
GK(R,R′, τ) =

(
m

2π~2∆τ

) dN
2 exp

[
− (R−R′)2

2τ

]
GD(R,R′, τ) = δ(R−R(τ))

GB(R,R′, τ) = e−(EL(R)−ET )τδ(R−R′)

(2.54)

where R(τ) is given by:
dR(τ)

dτ
= F(R(τ)) (2.55)

that is the classical trajectory of the configuration moving at a velocity given
by the drift term.

As in the non-importance sampling case we can split the time evolution
operator in several ways. A first order decomposition is given by:

U(∆τ) = e−(K+D+B)∆τ = e−K∆τe−D∆τe−B∆τ +O(∆τ2) (2.56)

which gives the approximate Green’s function:

G(R,R′,∆τ) =
( m

2π~2∆τ

) dN
2

e−(EL(R)−ET )∆τ

exp

[
−m
~2

(R−R′(∆τ))2

2∆τ

]
+O(∆τ2)

(2.57)
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where R′(∆τ) is the solution of (2.55) with the initial condition R′(0) = R′

solved at first order in ∆τ , this can be done for example by R′(∆τ) = R′ +
F(R′)∆τ .

A higher order decomposition is given by [49]:

U(∆τ) = e−B
∆τ
2 e−D

∆τ
2 e−K∆τe−D

∆τ
2 e−B

∆τ
2 +O(∆τ3) (2.58)

which gives the approximate Green’s function:

G(R,R′,∆τ) =
( m

2π~2∆τ

) dN
2

e
−
(
EL(R)+EL(R′)

2 −ET
)

∆τ

∫
dR′′δ(R−R′′(∆τ/2)) exp

[
−m
~2

(R′′ −R′(∆τ/2))2

2∆τ

]
+O(∆τ3)

(2.59)

whereR′(∆τ/2) andR′′(∆τ/2) are the solutions of (2.55) with initial conditions
R′ and R′′ respectively. In this quadratic Green’s function one must solve the
differential equation 2.55 with a second order algorithm.

Diffusion Monte Carlo algorithm with importance sampling

In the DMC method the probability density function f(R, τ) is represented as
an ensemble of NW points in the configuration space called walkers. A walker
is defined by the positions of all the particles of the system R = {r1, r2, ...rN}.
In this approximation we can write the function f as:

f(R, τ) = N
NW∑
i=1

δ(R−Ri(τ)) (2.60)

where N simply gives the normalization factor.
Once we have defined the function f(R, τ) at the present time step we need

to describe how the Green’s function given in (2.59) acts over it. At this point
we decompose the full effect of the Green’s function in three different steps.

The first step is a free diffusion. This process describes the isotropic diffusion
of a walker through the configuration space and can be easily implemented by

R′ = R + η
√

∆τ (2.61)

where η is a normalized gaussian random vector drawn from the free (or kinetic)
Green’s function GK defined in eq. (2.54) with η = R′ − R. This gaussian
diffusion must be performed for walkers in the ensemble at time τ .
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After the gaussian diffusion process there is the drift step. This step repre-
sents the effect of the importance sampling technique in the DMC algorithm.
This process tries to guide the imaginary time evolution of the walkers to regions
of the configuration space where the wave function is expected to be large. The
implementation of this step is as follows, first one needs to evaluate the drift
force defined in eq. (2.49) and then use some second order integration method
to integrate the differential equation (2.55). In our case we use the second order
Runge-Kutta method [49] given by the two following steps:

R′′ = R′ + ∆τF(R′)

R′′′ = R′′ +
∆τ

2
(F(R′′) + F(R′))

(2.62)

The last part of the effect of the Green’s function over the probability distri-
bution function is the key point of the DMC method, the branching process.
Up to this point the two different contributions to the short time Green’s func-
tion conserves the norm of the function f , but in order to solve exactly the
many body Schrödinger equation we have to add a term that is a source/sink
of walkers. The branching process duplicates walkers that best mimics the ex-
act ground state distribution or alternatively kills walkers that are far from the
desired solution.

The implementation of the branching process can by done by simply making
Nsons copies of each walker where Nsons is given by

Nsons = int
(
e−(EL(R)−ET )τ + χ

)
(2.63)

where χ is a uniform random number in the range [0, 1) and int() is the integer
part function.

At this point it is clear that we can adjust the reference energy ET in order
to reduce the fluctuations in the number of walkers and keep the population
size in the desired range. Another important issue is that when the number of
walkers remains statistically constant the trial energy ET is an estimator of the
ground state energy of the many body system.

At the end of an imaginary time step we will obtain a new probability dis-
tribution function given by:

f(R, τ + ∆τ) = N
N ′W∑
i=1

δ(R−Ri(τ + ∆τ)) (2.64)

So, in summary we can write the DMC algorithm as:
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1. Generate an initial set of walkers.

2. Evaluate the drift force (2.49) and the local energy (2.50) for each walker.

3. For each walker perform the diffusion, drift and branching processes as
explained above.

4. When asymptothic regime is reached repeat 2-3 until statistical accuracy
is the desired.

2.2.2 Path integral ground state

In this section we introduce the last Monte Carlo method that we have used
along this work. It is the path integral ground state (PIGS), also known as vari-
ational path integral [50, 51, 52, 53, 54]. This method has common points with
the two methods discussed previously (VMC and DMC). We can describe briefly
the PIGS method as a variational Monte Carlo method using an imaginary time
propagated trial wave function.

As we have seen previously we can write the imaginary time dependent
Schrödinger equation as an equivalent integral equation (2.30), and use that
expression for the wave function Ψ(R, τ) as a variational wave function in a
Monte Carlo calculation. In such a Monte Carlo calculation we can use as the
probability distribution function the following expression

Ψ(R, τ) =

∫
dR′G(R,R′, τ)Ψ(R, 0) (2.65)

The idea behind the PIGS method is similar to the previously commented in
DMC. We can decompose the Green’s function in several steps as:

G(RM ,R0, τ) ≈
∫
dRM−1...dR1

M−1∏
j=0

G(Rj+1,Rj ,∆τ) (2.66)

where ∆τ = τ
M . Using the decomposition of the Green’s function we can write

the ground state wave function as:

Ψ0(R) = lim
M→∞

∫
dRM−1...dR0

M−1∏
j=0

G(Rj+1,Rj ,∆τ)Ψ(R0, 0). (2.67)

It is obvious that in a computational simulation one must work with a finite M
value, so the point is to build a variational wave function with a finite number
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of convolution terms, using as initial condition a carefully chosen trial wave
function, Ψ(R, 0) = ΨT (R). With these considerations the variational wave
function in PIGS can be written as:

ΨPIGS(R, τ) =

∫
dRM−1...dR0

M−1∏
i=0

G(Rj+1,Rj ,∆τ)ΨT (R0) (2.68)

where RM = R. With this last expression for the PIGS wave function we can
evaluate the energy of the many body problem as

EPIGS(τ) =

∫
dRΨPIGS(R, τ)ĤΨPIGS(R, τ)∫
dRΨPIGS(R, τ)ΨPIGS(R, τ)

. (2.69)

The variational principle ensures that this expression is an strict upper bound
of the ground state energy of the many body problem. At this stage we can
see that the advantage of PIGS over VMC is that within this method we have
a systematic process that allows to obtain a variational energy that is in prin-
ciple as close to the exact ground state function as we need. One only have to
increase the number of convolution terms in order to obtain a better variational
estimation for the ground state energy. One can compute the energy for increas-
ing values of M and find an asymptotic regime where the bias introduced by
considering a finite number of convolution terms is smaller than the statistical
uncertainties introduced by the Monte Carlo process.

We have seen how to evaluate the energy of the system in terms of the
variational function ΨPIGS . One can write the expectation value of any other
operator as follows

< Ô >=

∫
dRO(R)|ΨPIGS(R, τ)|2∫
dR|ΨPIGS(R, τ)|2

. (2.70)

From the previous expression and the explicit form of ΨPIGS given in (2.68) we
can write that expectation value as

< Ô >=

∫
dRO(R)P (R), (2.71)

where the probability distribution function is given by

P (R0, ...R2M ) =
ΨT (R0)

∏2M−1
j=0 G(Rj+1,Rj ,∆τ)ΨT (R2M )∫

dR0...dR2MΨT (R0)
∏2M−1
j=0 G(Rj+1,Rj ,∆τ)ΨT (R2M )

.

(2.72)
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An important issue of the PIGS method is the short-time approximation of the
Green’s function of the system, which is the representation of the time evolution
operator in the position basis,

G(R,R′,∆τ) =< R|e−Ĥ∆τ |R′ > (2.73)

where Ĥ = K̂ + V̂ is the hamiltonian of the system and K̂ and V̂ are the
kinetic and potential energy operators respectively. The simplest short time
approximation to the Green’s function is the primitive approximation given by

e−Ĥτ = e−K̂∆τe−V̂∆τ +O(∆τ2). (2.74)

The representation of the kinetic and potential part of the Green’s function is
shown in the following epxpressions:

GK(R,R′,∆τ) =
( m

2π~2∆τ

) dN
2

e−
m
~2

(R−R′)2
2∆τ

GV (R,R′,∆τ) = e−V (R)∆τδ(R−R′)

(2.75)

where d is the dimensionality of the system. Using the primitive approximation
we can obtain the Green’s function for any imaginary time value τ increasing
the number of convolution terms in (2.72). The convergence to the exact result
is guaranteed by the Trotter formula:

e−τĤ = lim
M→∞

(
e−∆τK̂e−∆τV̂

)M
. (2.76)

The classical isomorphism

We have seen in the previous section the theoretical basis of the PIGS method.
In this section we will show an important issue of the method, the classical
isomorphism. The Green’s function G(R,R′, τ) can be written explicitly in
terms of the kinetic and potential contributions given in (2.75) as:

G(R0,R2M , τ) =
( m

2π~2∆τ

) dNM
2

∫
dR1, ...dR2M−1

2M−1∏
j=0

e−
m
~2

(Rj+1−Rj)2

2∆τ −V (Rj)∆τ

(2.77)
where R0 = R′, R2M = R and τ = M∆τ . The exponent of the kinetic term
can be written as:

− m

~2

(Rj+1 −Rj)
2

2∆τ
= − m

2~2∆τ

N∑
i=1

(rj+1,i − rj,i)
2 (2.78)
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while the potential term can be written as:

− V (R)∆τ = −∆τ

N∑
i=1

V1(ri,j) +
1

2

N∑
k=1,k 6=i

V2(ri,j − rk,j)

 (2.79)

where N is the number of particles of the system. Using the expressions
(2.78) and (2.79) one can write explicitly the probability distribution function
P (R1, ...RM ) from equation (2.72) as

P (R1, ...R2M ) =
1

Z

( m

2π~2∆τ

) dNM
2

e[−
∑N
i=1

m
2~2∆τ

∑2M−1
j=0 (ri,j+1−ri,j)2]×

× e[−∆τ
∑N
i=1

∑2M−1
j=0 (V1(ri,j)+

1
2

∑N
k=1,k 6=i V2(ri,j−rk,j))]×

× e(log ΨT (r1,0,...rN,0)+log ΨT (r1,2M ,...rN,2M ))

(2.80)

where Z is the following normalization integral

Z =

∫
dR0, ...dR2M

( m

2π~2∆τ

) dNM
2

e[−
∑N
i=1

m
2~2∆τ

∑2M−1
j=0 (ri,j+1−ri,j)2]×

× e[−∆τ
∑N
i=1

∑2M−1
j=0 (V1(ri,j)+

1
2

∑N
k=1,k 6=i V2(ri,j−rk,j))]×

× e(log ΨT (r1,0,...rN,0)+log ΨT (r1,2M ,...rN,2M ))

(2.81)

This last expression is completely analogous to the canonical partition function
of a system of N classical open polimers each of them having 2M+1 particles (or
beads) bounded by harmonic springs (the kinetic energy terms). Each polymer
interacts with the rest by means of the potential terms in a special way, there
is only interaction between beads corresponding to equal imaginary times.

Basic path integral ground state algorithm

Using the classical isomorphism the PIGS method can be thought as a vari-
ational Monte Carlo method applied to a system of N linear polymers that
interact between them. Starting from a set of initial configurations given by
{X1, ...,XN} where each Xi is the set of positions of one of these linear poly-

mers, i. e. Xi = {R(i)
0 , ...,R

(i)
2M+1}.

The PIGS algorithm is schematically given by:

1. Draw an initial configuration for each linear polymer {X1, ...,XN} repre-
senting the full imaginary time path of each particle.
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2. Guess a new configuration for the system by making X′i = Xi + δXi.

3. Evaluate the transition probability to the new configuration as

Q =
P (X1, ...,X

′
i, ...,XN )

P (X1, ...,Xi, ...,XN )
. (2.82)

4. Accept or reject the new configuration using Metropolis algorithm.

5. Compute observables of interest.

6. Repeat 2 - 5 to achieve the desired accuracy.

This is a basic PIGS algorithm build in complete analogy with the variational
Monte Carlo method that can be improved in several ways. The first problem
of this simple algorithm is that their efficiency can be not very high due to the
presence of the kinetic terms connecting different beads in each polymer. In the
following, we will see how to improve the efficiency of the sampling.

Staging algorithm

As we have commented previously, the simple sampling of the path integral can
have some efficiency problems due to the presence of the kinetic springs. There
are several methods to improve the efficiency of the sampling that can exploit
the fact that the kinetic part of the action can be exactly sampled. In this work
we have used the staging algorithm [55] with this purpose.

The staging algorithm works by purposing smart collective motions of sev-
eral beads of each linear polymer. The positions of the new configuration are
randomly generated using the kinetic part of the action and then the Metropo-
lis test must only be applied to the potential part improving dramatically the
efficiency of the algorithm.

In order to implement the collective motions let’s consider the free (or ki-
netic) part of the action as a product of kinetic contributions involving all the
beads of a single chain:

G0(x0,x2M , τ) =G0(x0,x1,∆τ)× ...×
×G0(xi,xi+1,∆τ)× ...×G0(xi+j−1,xi+j ,∆τ)× ...
×G0(x2M−1,x2M ,∆τ)

(2.83)

where the x variable make reference to the d-dimensional coordinates of any of
the N chains of the system. We are interested in build a new set of positions
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{xi+1, ...,xi+j−1} generated randomly according to the free particle action. We
can define the function S as:

S(xi,xi+j , j∆τ) =

j∏
k=1

G0(xi+k−1,xi+k,∆τ) (2.84)

and define a new set of coordinates y that allows us to write S in a decoupled
form given by

S(xi,xi+j , j∆τ) = G0(xi,xi+j , j∆τ)

j−1∏
k=1

G
(k)
0 (xi+k,yi+k,∆τ) (2.85)

where the function G
(k)
0 is defined as

G
(k)
0 (xi+k,yi+k,∆τ) =

( mk

2π~2∆τ

) d
2

e−
mk
~2

(xi+k−yi+k)2

2∆τ . (2.86)

As it can be seen from (2.86) the new coordinates imply a redefinition of the
mass term m → mk. So finally we can write the staging coordinates and the
new mass term as:

yi+k =
xi+j + xi+k−1(j − (k − 1))

j − k
(2.87)

mk = m

(
j − (k − 1)

j − k

)
(2.88)

Using this smart change of variables we can generate collective motions of several
beads in a single chain by simply generating gaussian random numbers as:

x′i+k = yi+k + η

√
~2τ

mk
(2.89)

where η is a U(0, 1) random number.

Using this method we generate a set of new coordinates using the kinetic
action as probability distribution function so we must sample only the potential
action in the Metropolis algorithm.
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High order approximation to the Green’s function

Another aspect that can be improved in the simple PIGS method that we have
explained is the approximation to the short time Green’s function of the system.
In the introduction of the method we have developed all the theory using the
so-called primitive approximation that is accurate up to second order in ∆τ .

< R|e(T+V )∆τ |R′ >=< R|eV2 ∆τeT∆τe
V
2 ∆τ |R′ > (2.90)

An obvious improvement is to consider some higher order decomposition for
the propagator of the system.

A more accurate form of the Green’s function allows for a faster convergence
of the method and, as a consequence, a decrease in the required number of beads
or a larger time step to achieve the convergence. In this work we have used the
following approximation for the short time propagator [56, 57, 58]:

< R|e(T+V )∆τ |R′ >=< R|eV6 ∆τe
T
2 ∆τe

2W
3 ∆τe

T
2 ∆τe

V
6 ∆τ |R′ > +O(∆τ5)

(2.91)
where

W = V +
1

48
[V, [T, V ]] (2.92)

Using this high order decomposition for the short time propagator the Green’s
function can be written as:

G(R,R′,∆τ) = G(0)(R,R′′,∆τ)G(1)(R′′,R′,∆τ) +O(∆τ5) (2.93)

where the functions G(0) and G(1) are given by:

G(i)(R,R′,∆τ) = GK(R,R′,∆τ)×G(i)
V (R,R′,∆τ) (2.94)

and

G
(i)
V (R,R′,∆τ) =

{
e−

2
3V (R′)∆τ if i is even

e−
4
3V (R′)∆τ− ~2∆τ3

9m

∑N
j=1 |∇jV (R′)|2 if i is odd

(2.95)

This expression for the short time Green’s function is a particular case of a more
general family of approximations derived from symplectic decompositions of the
propagator [57].
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Fourth order path integral ground state algorithm with staging

The improved PIGS algorithm that incorporates staging sampling to improve
the convergence of the method is the following

1. Draw an initial configuration for each linear polymer {X1, ...,XN} repre-
senting the full imaginary time path of each particle.

2. Guess a new configuration for the system by making use of the staging
method.

3. Evaluate the transition probability to the new configuration as

Q =
P (X1, ...,X

′
i, ...,XN )

P (X1, ...,Xi, ...,XN )
. (2.96)

4. Accept or reject the new configuration using Metropolis algorithm.

5. Compute observables of interest.

6. Repeat 2 - 5 to achieve the desired accuracy.

The main difference between the improved and the basic algorithms is that in
the improved algorithm the new configurations of the system are proposed using
the staging method that, as we have seen, samples exactly the kinetic part of
the action and therefore the transition probability involves only the evaluation
of potential action.

In addition to the given steps it is convenient to accelerate the convergence
by performing full chain translations of each chain between several steps of the
simulation. This translations are proposed as:

X′i = Xi + δXi (2.97)

and then are accepted or rejected using the Metropolis algorithm.

2.3 Evaluating properties

In this section we will show how the observables of interest are evaluated from
the Monte Carlo sampling. We are interested in the evaluation of the energy
per particle of the system, that allows us to build the equation of state, and
also in structural quantities like the pair distribution function and its Fourier
transform, the static structure factor. Another important quantity to evaluate
is the one-body density matrix that gives information about the Bose-Einstein
condensation in the system.
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2.3.1 Energy per particle

The energy of a quantum system can be evaluated as the expected value of the
many body hamiltonian given by:

H = − ~2

2m

N∑
i=1

∇2 +

N∑
i=1

V1(ri) +
∑
i<j

V2(ri − rj) (2.98)

As we have seen the Schrödinger equation is given by:

< Ψ|H|Ψ >= E < Ψ|Ψ > (2.99)

so the energy can be evaluated by the following expression

E[Ψ] =
< Ψ|H|Ψ >

< Ψ|Ψ >
(2.100)

that can be put in integral form as:

E[Ψ] =

∫
dRΨ∗(R)HΨ(R)∫

dR|Ψ(R)|2
(2.101)

and can be expressed in terms of the probability distribution as

E[Ψ] =

∫
dR|Ψ(R)|2HΨ(R)

Ψ(R)∫
dR|Ψ(R)|2

=

∫
dRP (R)Eloc(R) (2.102)

where P (R) = |Ψ(R)|2∫
dR|Ψ(R)|2 and Eloc = HΨ(R)

Ψ(R) .

The hamiltonian acting on the wave function can be split in the kinetic and
potential terms, the potential term can be simply written as:

VΨ(R)

Ψ(R)
=

N∑
i=1

V1(ri) +
∑
i<j

V2(ri − rj) (2.103)

and the kinetic term:
KΨ(R)

Ψ(R)
= − ~2

2m

∇2
RΨ(R)

Ψ(R)
. (2.104)

It is convenient to write the acting of the laplacian on the wave function as:

∇2
RΨ(R)

Ψ(R)
= ∇2

R log Ψ(R) + (∇R log Ψ(R))2 (2.105)
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Variational Monte Carlo

In a variational Monte Carlo sampling we have no access to the exact wave
function of the system so, in general, we can evaluate the energy substituting
the exact wave function by the trial wave function ΨT (R), is we do this change
the second term in (2.105) can be identified as the drift force and the total local
energy can be written as:

Eloc(R) = − ~2

2m

(
∇2

R log ΨT (R) + F (R)2
)

+ V (R) (2.106)

In a VMC simulation this quantity is obviously an approximation to the exact
ground state energy of the system.

Diffusion Monte Carlo

In a DMC simulation we sample the product of the exact wave function of the
system times the trial (or guiding) wave function so the energy of the system
can be written as:

E =

∫
dRΨ(R)ΨT (R)Eloc(R)∫

ΨT (R)Ψ(R)
=

∫
dRΨ(R)ΨT (R)HΨT (R)

ΨT (R)∫
ΨT (R)Ψ(R)

(2.107)

so finally we can write

E =

∫
dRΨ(R)HΨT (R)∫

ΨT (R)Ψ(R)
(2.108)

thanks to the hermiticity the hamiltonian can act on the left or on the right
and considering that H|Ψ >= E0|Ψ > we can write

E = E0

∫
dRΨ(R)ΨT (R)∫

ΨT (R)Ψ(R)
= E0 (2.109)

So in a DMC simulation we also have to evaluate the expectation value of the
local energy function.

Path integral ground state

In a PIGS simulation the evaluation of the energy can be done in several ways.
In this work, we have chosen the mixed estimator as in the case of DMC. In
PIGS the physical observables must be evaluated at the mid-point of the chain
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but in the case of the energy, as we are evaluating the expected value of the
hamiltonian it can act on the extreme points (R0, RM ) given that[

H, e−Hτ
]

= 0 (2.110)

So the mixed estimator of the energy on a PIGS simulation is given by:

E =

N∑
i=1

HΨT (R0)

ΨT (R0)
=

N∑
i=1

Eloc(R0) (2.111)

2.3.2 Pair distribution function

Another observable of interest in the study of quantum gases is the so called
pair distribution function that is given by the following expression:

g(r1, r2) =
N(N − 1)

n2

∫
|Ψ(R)|2dr3 · · · drN∫
|Ψ(R)|2dr1 · · · drN

. (2.112)

In an homogeneous system the pair distribution function depends only in the
relative position r1 − r2. The equation (2.112) can be written in the following
form by defining r = r1 − r2

g(r) =
N(N − 1)

n2Ld

∫
δ(r1 − r2 − r)|Ψ(R)|2dR∫

|Ψ(R)|2dR
. (2.113)

where L is the size of the simulation box and d is the dimensionality of the
system. This last expression is written in a more suitable form for a Monte
Carlo evaluation.

In order to have more statistic and reduce the variance of the estimator it
is common to sum over all possible pairs of particles in the system, if we do so
the final expression that we will evaluate in our Monte Carlo simulations is

g(r) =
2

nN

∫ ∑
i<j δ(rij − r)|Ψ(R)|2dR∫

|Ψ(R)|2dR
. (2.114)

where rij = ri − rj .
The evaluation of the pair distribution function in the Monte Carlo sampling

it is simply implemented by making an histogram of the relative distance of each
pair of particles of the system.
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2.3.3 Static structure factor

A quantity related with the pair distribution function that is very interesting
in the study of the macroscopic state of a quantum gas is the static structure
factor, that is also accessible experimentally.

The static structure factor is related with the Fourier transform of the pair
distribution function

S(k) = 1 + n

∫
dre−iq·r(g(r)− 1). (2.115)

Despite of its apparent simplicity, this expression is not the best way to evaluate
the static structure factor in a Monte Carlo calculation. Instead of using (2.115)
it is better to use the alternative definition of S(k) that states that it is given
by the correlation of the momentum distribution between k and −k

NS(k) =< ρ−kρk > −| < ρk > |2 (2.116)

Using the property ρ−k = ρ∗k we can write (2.116) as

NS(k) =< |ρk|2 > −| < ρk > |2 (2.117)

The density distribution in a Monte Carlo calculation is given by

n(r) =

N∑
i=1

δ(r− ri) (2.118)

that can be expressed in the momentum space as:

ρk =

∫
eik·rn(r) =

N∑
i=1

eik·ri =

N∑
i=1

cos k · ri + i

N∑
i=1

sin k · ri (2.119)

Using the definition of ρk we can write finally the expression for the evaluation
of the static structure factor as:

NS(k) = 〈

(
N∑
i=1

cos k · ri

)2

+

(
N∑
i=1

sin k · ri

)2

〉

− | <
N∑
i=1

cos k · ri > |2 − | <
N∑
i=1

sin k · ri > |2
(2.120)
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In an homogeneous system the last two terms vanish.
The last consideration concerns the values of k in an homogeneous system,

as we simulate the system in a finite simulation cell we must choose values of k
that are compatible with the size of the box:

ki =
2π

Li
ni (2.121)

where ni = 1, 2, ... and Li are the length of the box in the direction i.

2.3.4 One body density matrix

The last quantity that we are interested in is the one body density matrix that
gives us information about the Bose - Einstein condensation in the system. In
an homogeneous system the one body density matrix ρ(r) is given by:

ρ(r− r′) = N

∫
· · ·
∫

Ψ∗(r, r2, · · · , rN )Ψ(r′, r2, · · · , rN )dr2 · · · drN∫
· · ·
∫
|Ψ(r, · · · , rN )|2dr1 · · · drN

(2.122)

In VMC the wave function that we are sampling is the ΨT (R) so the previous
expression can be written as:

ρ(r− r′) = N

∫
· · ·
∫ Ψ∗T (r,r2,··· ,rN )

Ψ∗T (r′,r2,··· ,rN ) |ΨT (r′, r2, · · · , rN )|2dr2 · · · drN∫
· · ·
∫
|ΨT (r, · · · , rN )|2dr1 · · · drN

(2.123)

where P (R) = |Ψ(R)|2∫
|Ψ(R)|2dR .

On the other hand in the DMC method we are sampling the mixed function
f(R) = ΨT (R)Ψ(R) so the expression (2.122) is

ρ(r− r′) = N

∫
· · ·
∫

Ψ∗T (r, r2, · · · , rN )Ψ(r′, r2, · · · , rN )dr2 · · · drN∫
· · ·
∫
|f(r, · · · , rN )|2dr1 · · · drN

(2.124)

that can be written again as:

ρ(r− r′) = N

∫
· · ·
∫ Ψ∗T (r,r2,··· ,rN )

Ψ∗T (r′,r2,··· ,rN )f(r′, r2, · · · , rN )dr2 · · · drN∫
· · ·
∫
f(r, · · · , rN )dr1 · · · drN

(2.125)

From the asymptotic behavior of the one body density matrix the condensate
fraction of the system can be extracted as:

lim
|r−r′|→∞

ρ(r− r′)

n
=
N0

N
(2.126)

where N0 is the number of particles on the condensate.
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2.4 Trial wave functions

A key ingredient of the zero temperature quantum Monte Carlo methods is the
trial wave function of the system. The trial function allows us to introduce
all the a priory information about the physics of the system to improve the
convergence and accuracy of the Monte Carlo sampling.

It is usual in the study of quantum bosonic fluids to consider the wave
function as:

Ψ(r1, · · · , rN ) = exp (U1 + U2 + U3 + · · ·+ UN ) (2.127)

where the different functions Ui are terms involving correlations of i particles,

U1 =

N∑
j=1

u1(rj)

U2 =
∑
i<j

u2(ri, rj)

U3 =
∑
i<j<k

u3(ri, rj , rk)

(2.128)

A common approximation is to consider a wave function containing only terms
involving two body correlations, which implies Ui = 0 ∀i > 2, such a wave
function is called Jastrow wave function and can be written as:

Ψ(r1, · · · , rN ) = exp

∑
i<j

u2(ri, rj)

 (2.129)

where u2(ri, rj) = u2(ri − rj) for an homogeneous system like a gas or a liquid.
The two body correlation function exp(u2(ri−rj)) it is chosen to reproduce the
exact behaviour of the two body problem at low distances in order to avoid the
possible singularities of the local energy at short distances caused by interactions
that are strongly repulsive at short distances. For a non homogeneous system
like a crystalline solid we have to consider in general a one body term in addition
to the two body Jastrow term in order to help the Monte Carlo sampling to find
the ground state configuration of the system.


