
Conda environment system &
how to use it on CSUC machines

Víctor Pérez

08/ 10 / 2019

Index

1. What is conda?

2. Scope of the project

3. How to use conda

4. Conda environments

5. Package management

6. Python through conda

7. R through conda

What is conda?

• Originally: Anaconda, a distribution of Python
including common scientific packages

https://www.anaconda.com/

• Extended to include R and R packages, scientific
libraries, other software, etc.

• conda: core package manager for the Anaconda
project

What is conda?

• conda installs and updates binary versions of
Python and R packages from its own (or third
party) repositories

• It is an alternative to other repository systems,
like pip for Python or CRAN for R

• It is also a way to manage dependencies for
Python and R packages

But conda isn't...

• A repository of system software packages
(such as apt or yum)

• A repository of source code

• A replacement for environment modules

• Exhaustive or infallible

Scope of the project

• Python 2 & Python 3

• R

• Jupyter, Spyder, Rstudio...

• NumPy, SciPy, Pandas, Numba, Dask...

• Scikit-learn, TensorFlow, Theano...

• Matplotlib, Bokeh, Datashader, Holoviews...

• A variety of external libraries and tools

Conda channels

• Channels are thematic collections of packages,
useful to avoid version conflicts (equivalent to
repositories)

• Examples:

– pkgs/main: default channel

– conda-forge: large collection of third party packages

– bioconda: software for bioinformatics

– r: tailored to R users

How to use conda

• We need to load an environment module to
configure conda.

• First decision: Python 2 or Python 3?

Python 2: module load conda/2

Python 3: module load conda/3

How to use conda

• Then we use the command conda (+ action) to
run it:

conda list

conda activate

conda create

conda search

conda install

conda update

conda help

Conda environments

• Inside a given installation of conda (conda/2 or
conda/3), there are a number of environments

• Environments are profiles: each will have a
different list of packages and versions installed

• There is a default base env, shared envs
(accessible to all users) and private envs
(accesible to the current user only)

Activating/Deactivating environments

• To see a list of environments: conda env list

• To load an env: conda activate <env_name>

• To unload: conda deactivate

Activating/Deactivating environments

• To see the contents of an env: conda list [-n env_name]

(by default, currently activated environment)

• Note: source activate and source deactivate are obsolete

Shared environments

• Maintained by our HPC team, available to all
users:
– base: Python and common Python packages

– bio-computation: Python, Biopython, Bioperl and
libraries for bioinformatics

– machine-learning: Python and R for ML, including
Scikit-learn, TensorFlow and Keras

– machine-learning-gpu: same but with GPU support

– quantum-chem: Python tools for QC, including MDtraj,
PySCF, libcint and libxc

Private environments

• Users can create their own private envs (stored at
$HOME/.conda/envs) which won't we visible for
other users

• To create a new empty environment: conda
create -n <env_name>

• To create a new environment with packages
preinstalled in it: conda create –n <env_name>
[list of packages]

Private environments

• To install one or more packages in a private env: conda
install [-n env_name] <packages>

• If no env is specified, installed in currently active
environment

• Version and channel can also be specified: conda install
[-n env_name] [-C channel] <package=version>

• Important note: users don't have permissions to install
packages in shared environments!

Private environments

• To update packages in an environment: conda
update [-n env_name] <specific packages> or
conda update [-n env_name] --all

• To uninstall packages: conda remove [-n
env_name] <packages>

• To completely delete a private environment:
conda remove -n <env_name> --all

Using Python through conda

#!/bin/bash
#SBATCH –p std
#SBATCH –N 1
#SBATCH –n 1

module load conda/3
conda activate machine-learning

python example.py

Using R through conda

#!/bin/bash
#SBATCH –p std
#SBATCH –N 1
#SBATCH –n 1

module load conda/3
conda activate machine-learning

Rscript example.R

Using R through conda

• It is possible to install R packages to the
private library directory using CRAN, although
it requires configuring a proxy!

Best practices

• Creating a private env tailored to your needs is
usually more efficient than using shared envs

• Avoid clutter in your private environments; it's
better to create multiple single-purpose
environmentes than one large environment with
too many packages

• Be mindful of version collision when updating
environments; if you don't need to update, don't

Thank you for your attention!

